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Abstract
This letter deals with the global monodromy of singular Lagrangian toral
fibrations defined by two degrees of freedom Liouville integrable systems with
only focus–focus singular points. We show that any global monodromy matrix
in Sl(2,Z) is realizable by such a system.

PACS numbers: 05.45.a, 02.40Yy, 45.20.Jj

Recently, there has been an increase of interest in classical integrable systems with monodromy
[1, 2] because of its presence in quantum systems [3–5]. At present only examples with the
simplest monodromy have been described [6–9]. In this letter, we show that a two degrees
of freedom Liouville integrable Hamiltonian system having a sufficiently large number of
focus–focus critical points, each of which possesses an elementary local monodromy matrix,
can have an arbitrary global monodromy matrix. In particular, the minimal number of focus–
focus points needed to realize the Arnold’s cat map is shown to be equal to 12. This number
is also needed to realize the identity as a global monodromy matrix. We note that the global
monodromy matrix is a rather crude invariant of two degrees of freedom Liouville integrable
systems as it does not distinguish between no focus–focus critical points and the presence of
groups of 12 such critical points.

We now give a formal mathematical statement of our result,which we cannot find explicitly

mentioned in the literature. Let T = ( 1 1

0 1

)
. Consider the set S formed by finite products of

conjugates of T by elements of Sl(2,Z), the group of 2×2 integer matrices with determinant 1.
In other words,

S =
{

n∏
i=1

AiT A
−1
i ∈ Sl(2,Z)

∣∣∣∣∣Ai ∈ Sl(2,Z) andn ∈ Z�1

}
. (1)

In (1), the matrix Ai is allowed to be ±I = ±( 1 0

0 1

)
; so T k ∈ S for every k ∈ Z�1.
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Theorem. S = Sl(2,Z).

We will return to proving this theorem after we explain in more detail the origin of the set
S in the study of two degrees of freedom Liouville integrable systems with only focus–focus
singular points. We recall the global geometric formulation of such systems [10].

Let M be a four-dimensional smooth connected symplectic manifold with symplectic
form ω. Let B be an oriented two-dimensional smooth manifold. Suppose that F : M → B

is a smooth proper surjective map with connected Lagrangian fibres, which is a submersion
except for a discrete number of critical values ci ∈ B. Assume that each critical point
of F in the fibre F−1(ci) is a focus–focus singularity. This means that at m ∈ M , where
dF(m) = 0, there is a chart (U, ϕ) of M at m with local canonical coordinates (x, y, ξ, η),
where ω|U =dx ∧ dξ + dy ∧ dη, and a chart (V ,ψ) of B at F(m) such that the vector space
spanned by the Hessians D2F1(m) and D2F2(m), where (F1, F2) are the components of F in
the given charts, is generated by the quadratic forms

q1 = xξ + yη and q2 = xη − yξ.

This is the Williamson normal form for the focus–focus singularity [11].
Under the above hypotheses, the (semiglobal) monodromy theorem [12] holds. Namely,

there is a suitable oriented closed 2-disc Di ⊆ R
2, centred at ci , such that cj �∈ Di if j �= i.

SinceD
∗
i = Di\{ci} lies in the set of regular values of F, the map πi : F−1(∂Di) → ∂Di is a

smooth fibration with fibre which is a smooth two-dimensional torus. Let ki be the number of
focus–focus critical points in the critical fibre F−1(ci). Then choosing a suitable ordered basis
of the first integer homology group H1

(
F−1(bi),Z

)
of the fibre F−1(bi), where bi ∈ ∂Di ,

the (local) monodromy of the fibration πi is Mi = ( 1 ki
0 1

)
. We note that there are other ways

of forming a singular fibre than just pinching several cycles, which are equal homologically,
to a point. (See the statement of the monodromy theorem.) But we will not discuss them
here.

From the geometric version of the action-angle coordinate theorem [2], the oriented
smooth manifold Br = B\{ci} has an integral affine structure. The affine structure means
that there is an affine connection ∇̃ on T ∗Br , which is flat and torsion free [13]. The integral
structure may be described as follows. There are two 1-forms αi on Br , which are linearly
independent and are ∇̃-parallel along the integral curves of the vector fields Vj defined by
Vj αi = δij .3 Moreover, the Hamiltonian vector fields ω
(F ∗αi) (see footnote 4) on (M,ω)
when restricted to the torus F−1(b0) have period 1 and form a Z-basis of H1

(
F−1(b0),Z

)
for

every b0 ∈ Br .
Suppose that we fix an index i0. Let γi0 : S1 → Br be an oriented loop whose image

is the circle ∂Di0 which surrounds only the critical value ci0 . Let bi0 = γi0(e) and choose
an ordered basis

{
X1

(
bi0

)
,X2

(
bi0

)}
of Tbi0Br such that after parallel translation along γi0

by the flat affine connection ∇ on Br , which is dual to the connection ∇̃, we obtain the
holonomy matrix Mi0 . Suppose that γi is another such loop around ci with i �= i0. Let
�i0i be an oriented path in Br which joins bi to bi0 . Then using the connection ∇ to parallel

transport the frame
{
X1

(
bi0

)
,X2

(
bi0

)}
along the closed curve �i = �i0i◦γi◦

(
�i0i

)−1
gives

the holonomy Ni ∈ Gl(2,R). Since Ni is an isomorphism of H1
(
F−1(bi),Z

)
, it is an

element of Gl(2,Z). However, because parallel transport is orientation preserving, Ni lies in
Sl(2,Z).
3 We have used the notation of Sternberg [14] to denote the contraction of a vector field with a 1-form, namely,
(Vj αi)(b) = αi(b)(Vj (b)).
4 Here we follow the convention of Abraham–Marsden [15] to define the map ω
(b) : T ∗

b Br → TbBr by
ω(b)(ω
(b)(αb), vb) = αb(vb) for every b ∈ Br .
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Figure 1. Relation between local monodromy matrices and global monodromy.

There is a flat affine connection ∇̂ on the cohomology bundle H ∗(Fr) : H 1
(
F−1

(Br),Z
) → Br associated with the fibration Fr = F |F−1(Br) : F−1(Br) → Br , which

is induced by the connection ∇̃. We note that the cohomology bundle is nothing but the bundle
of period lattices. Because Fr is a proper map, the connection ∇̂ is complete. Hence we
can parallel transport the fibres of Fr along the curve �i0i . This gives a linear bijection Ai of
H 1

(
F−1
r (bi),Z

)
into H 1

(
F−1
r

(
bi0

)
,Z

)
. Using ∇̂ to parallel transport along the closed curve

�i we obtain the holonomy matrix Ni = AiMiA
−1
i . Because the connection ∇̂ is induced by

the connection ∇̃, it follows that Ni = Ni . Hence Ni = AiMiA
−1
i , where Ai ∈ Sl(2,Z).

If we now take a loop � in Br with base point bi0 , which encloses the set
{
ci1 , . . . , cin

}
of critical values of the map F, then � is homotopic in Br to the curve �in◦ · · · ◦�i1 . The
holonomy of the frame

{
X1

(
bi0

)
,X2

(
bi0

)}
around � is

∏n
j=1AijMij A

−1
ij

. This explains the
origin of the set S introduced at the beginning of this letter. Figure 1 illustrates this last
argument in a schematic way.

A recent result of Zung [16] states that any affine structure on B (in particular, any discrete
collection of focus–focus critical values with possibly multiple focus–focus singular points in
the same fibre) can be realized by a suitable map F : M → B which satisfies our assumptions.

We now return to the proof of the theorem formulated at the beginning of this letter and
then to a discussion of its consequences.

Proof of the theorem. As is well known the group Sl(2,Z) has the presentation

〈U,V ;U 4 = I, U 2 = (UV )3〉
see Serre [17]. Thus to prove the theorem it suffices to give an explicit construction of the

generators U and V as products of Sl(2,Z)-conjugates of T = ( 1 1

0 1

)
. Let B = ( 0 1

−1 0

)
. Then

U = T (BTB−1)T (2)

V = (BTB−1) T [T (BTB−1)T ]3 (3)

satisfy U 4 = 1 and U 2 = (UV )3. �

Remark. Compare this argument with the construction of elements of Sl(2,Z) given in
[18–20].
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The above theorem has several consequences that are important for applications.

(1) The element V is nothing but T −1. V is a product of eleven Sl(2,Z)-conjugates of T.
(2) The element UV can be written as product of two Sl(2,Z)-conjugates of T. Namely, let

C = ( −1 1

0 −1

)
. Then UV = (CTC−1)(BTB−1).

(3) The identities U 4 = 1 and (UV )6 = 1 are a product of twelve Sl(2,Z)-conjugates of T.

(4) Arnold’s cat map
( 2 1

1 1

)
can be expressed as a product of twelve Sl(2,Z)-conjugates of T.

Explicitly, [(
0 −1
1 0

)
V

(
0 1

−1 0

)][(
1 0

−1 1

)
T

(
1 0
1 1

)]
=

(
2 1
1 1

)
. (4)

(5) There are hyperbolic maps which have a much shorter presentation as products of Sl(2,Z)-
conjugates of T than Arnold’s cat map. For example, hyperbolic matrices with trace 2−k2

with k an integer greater than two can be written as(
1 1
0 1

) [(
1 0
k 1

)(
1 1
0 1

)(
1 0

−k 1

)]
=

(
1 − k − k2 2 + k

−k2 1 + k

)
. (5)

We now give a formulation of the above group theoretical results in terms of two degrees
of freedom Liouville integrable systems with multiple focus–focus points.

Corollary. Every element of Sl(2,Z) may be obtained as the monodromy of a two degrees
of freedom Liouville integrable system whose momentum map is proper, has connected fibres,
and has a discrete number of critical values where the corresponding singular fibre has only
focus–focus singular points possibly with multiplicity.

In order to construct an explicit example of a dynamical system with any given monodromy
matrix it may be useful to know the minimal number of singular fibres (probably with nontrivial
multiplicity) needed to realize such a system. The authors do not know the answer to this
general question. We have found that to realize Arnold’s cat map as the monodromy of a
two degrees of freedom Liouville integrable system whose momentum mapping is proper, we
need three critical focus–focus fibres of multiplicity 9, 2 and 1 respectively. Namely, let us

introduce matrices X = ( −2 −1

1 0

)
, Y = ( −4 −1

1 0

)
, then we have

[T 9][YT Y−1][XT 2X−1] =
(

2 1
1 1

)
. (6)

The above argument shows the possibility of improving Boslinov’s and Dullin’s example
[21] of a three degrees of freedom Liouville integrable system with Arnold’s cat map as
monodromy by reducing the number of degrees of freedom to two. Moreover, in order to
study quantum and classical systems with hyperbolic monodromy maps it would probably be
better to start with hyperbolic maps which have a simple presentation in terms of multiple
focus–focus points. As we have shown in (5) above, an integrable system with two focus–focus
points can lead to a hyperbolic monodromy matrix.
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